
 1

Response to Draft CDF SAM Requirements !DRAFT!

Adam Lyon, July 20, 2005

1 Introduction
CDF has released draft expectations for SAMGrid in the form of a
requirements document (sent via e-mail on June 30, 2005 and reproduced
verbatim in Appendix A). The summary of DC rate expectations is shown in
Table 1.

Input file delivery 8/s
File stores 50/s (includes a declaration and

setting location)
Meta-data queries 25/s

Project starts & stops 1/s
Dataset queries 1/s
Project dumps 2/s

Project recovery dataset definitions 1/s

Table 1. CDF SAM Rate Expectations (DC)

In order to evaluate these draft requirements, we compare the expectations
to the current load of SAM generated by DØ. SAM has been running very
successfully at DØ, and therefore provides a sense of the load that SAM can
currently comfortably handle. Extensive testing will be required if SAM is
asked to handle a significantly increased load.

2 Responses to CDF Expectations
We examine each CDF expectation, providing a comparison to DØ and a
response from the SAMGrid project.

2.1 Project start/stops
CDF expected a project starting every second (they actually expect 7-8/s, but
reduced the requirement to one). In DØ parlance, a project is a group of
parallel jobs (may be just one) that all pull from the same pool of input files.
In CDF parlance, a project is one job with one or more parallel segments. In
SAM parlance, a project may consist of one or more parallel consumers. A
consumer then consists of one or more parallel processes all pulling from the
same pool of input files. So a process is equivalent to a DØ job and a CDF

 2

segment. Note that multiple consumers are rare, but multiple processes
under a single consumer are commonplace.

2.1.1 DØ experience
The project start rate has been measured for the time period July 1, 2004 –
July 1, 2005 using the central SAM database. See Appendix B.3 for details of
the measurements. The DØ project start rate for SAM world wide for the
mentioned period is shown in Fig. 1.

Fig. 1. DØ SAM world wide project start rate (starts per day) for 7/1/04-7/1/05.

The mean number of project starts per day is 282.8 per day or 0.0033 per
second. The maximum number of starts per day is 925 per day or 0.011 per
second. The maximum number of project starts is 93 times less than the
claimed CDF DC expectation.

 3

Fig. 2. Sharing the load among different DB servers for project starts.

DØ handles the load by distributing stations among different DB servers. In
practice, the largest stations are on their own DB servers. For example, the
two analysis stations share a DB server. The station DB server services the
majority of stations.

2.1.2 Response
The expected number of DC project starts appears to be excessively high; 306
times the mean rate that DØ achieves world wide. Perhaps what was really
meant was process starts - that is SAM servicing a job segment instead of a
group of segments. Process starts will be examined next.

2.2 Process starts
A process starts for each parallel segment (or job in DØ parlance). The
process corresponds to an instance of the executable that is expecting files.

2.2.1 DØ experience
The process start rate was measured from July 1, 2004 – July 1, 2005. See
Appendix B.4 for details of the measurement.

The DØ process start rate for the period mentioned above is shown in Fig. 3.

 4

Fig. 3. The DØ process start rate for the period 7/1/04-7/1/05.

At around the start of 2005, the rate looks to be steadily increasing. To
understand this effect the data are split by the servicing DB server. That plot
is shown in Fig. 4. One clearly sees the start of the DØ reprocessing effort in
late 2004 – early 2005. The Farm, Grid, and Station DB servers all service
stations involved in the reprocessing effort. Note that the central-analysis
station was discontinued at the start of 2005.

 5

Fig. 4. Process start rates (#/day) shown for the different servicing DB servers. The name in
the box indicates the DB server for the plot underneath.

Fig. 5. Load sharing among DB servers for the total process start rate.

To see how the DB servers share the total process start load, see Fig. 5.

 6

2.2.2 Response
Assume that the CDF expected project start rate is really the processs start
rate. The DØ world wide maximum process start rate is 7722 process starts
per day, or 0.09 per second. The CDF expectation of one process start per
second again seems excessively high (11 times higher than the DØ rate). We
request that CDF produce a plot how many job segments actually start per
second (not how many can start, but how many actually do, over the past
year). We think that will give a better idea of the CDF load. Certainly the DØ
load has increased significantly over the past year (about a factor of 4), and
SAM has been able to keep up.

2.3 Input file delivery
SAM delivers a file to an awaiting executable. The executable then consumes
the file, and is it marked as such in the SAM database. CDF expects to need a
file consumption rate of 8 files per second.

2.3.1 DØ experience
The file consumption rate was measured for the period July 1, 2004 – July 1,
2005. See Appendix B.5 for the measurement details.

Fig. 6. Total number of files consumed per day for DØ for the period 7/1/04 – 7/1/05.

 7

Fig. 6 shows the total world-wide file consumption rate (# files per day). The
mean number of files consumed is 13192 per day (0.15/s) and the maximum is
37759 per day (0.44/s).

Fig. 7 indicates how the consumption rate is divided by the different servicing
DB servers. The CAB analysis stations generate the most rate. Note the huge
spike for the grid DB server during a reprocessing test.

Fig. 7. File consumption shown for the different servicing DB servers.

The file consumption rate is shared by the DB servers. Fig. 8 shows how the
load is divided. As suggested, CAB indeed creates the largest load and has its
own DB server.

 8

Fig. 8. File consumption load among the DB servers.

2.3.2 Response
The CDF expected file consumption rate is 52 times larger than the mean DØ
rate and 18 times larger than the DØ maximum. Note that the DB server
probably has very little to do with a limit on this rate -- rather it is the load
on the station, disks, tapes, and network infrastructure. CDF obtained this
expectation from the maximum dCache delivery rate. It would be more
realistic to measure the CDF file input rate directly and compare.

2.4 File storage
File storage means declaring a file to SAM and then giving its location. CDF
expects 50 file stores per second.

2.4.1 DØ experience
The DØ world wide file store rate was measured from July 1, 2004 – July 1,
2005. See Appendix B.6 for measurement details. This measurement includes
files stored to durable locations in the process of merging.

 9

Fig. 9. DØ world wide file storage rate (including storing to durable locations). File

stores/day.

Fig. 9 shows the world wide DØ file storage rate. As in the process rate, the
plot is increasing steadily after the start of 2005. Looking at how the file
stores are broken up among DB servers, it is clear that the DØ reprocessing
is causing the rise. See Fig. 10. Note that dlsam is the online raw file storage.

 10

Fig. 10. DØ file store rate for the different DB servers. One sees the large increase from the

farm, grid, and station DB servers as a result of the DØ reprocessing effort.

As in all cases before, having multiple DB servers helps to spread the load, as
shown in Fig. 11.

Fig. 11. Load sharing for total file store rate among the DB servers.

 11

It is also important to look at file storage rates by bytes instead of numbers of
files. See Fig. 12.

Fig. 12. DØ world wide file storage rates by Terabyts/day.

To understand how this load is generated, the same information is shown
divided up by servicing DB server in Fig. 13. Note that the drop in Farm
storage is due to the cessation of storing the large size DST files. The file
stores from CAB are skims and analysis fixed thumbnails. DLSAM is the
online system. The rise in the Farm, Grid, and Station DB servers represent
the DØ reprocessing effort.

 12

Fig. 13. File storage by DBServer. See notes in the text.

2.4.2 Response
The mean DØ file store rate is 2471 files per day (0.029/s) or 0.9 TB/day. The
maximum DØ file store rate for the period is 8425 files per day (0.098/s) or
2.6 TB/day. The values include all MC, raw data, processing, reprocessing
and user file stores, including intermediate MC and merging files. The CDF
expectation of 50 file stores per second is 1748 times the DØ mean rate and is
513 times the DØ maximum rate. only caveat is that DØ tends to store files
as the jobs go along, instead of waiting until the very end. If CDF plans to
store files in bursts, they would be well advised to consider the DØ method.

 13

3 Summary

Quantity CDF DC

Expectation/s
DØ

Mean/s
CDF is ×

times
mean

DØ max/s CDF is ×
times
max

Project
starts

1 0.0033 306 0.011 93

Process
starts

1 0.029 34 0.09 11

File
consumption

8 0.15 52 0.44 18

File storage 50 0.029 1748 0.098 513

 14

Appendix A CDF's Draft Requirements Document
Sent via e-mail on June 30, 2005, reproduced here verbatim...

.) From the dCache agreement:

up to 80 TB/day, 4 TB/hour.
assuming 1GB files

80000/day = 0.92 files/sec (if 100k files) 1.2 files/sec
4000/3600 = 1.11 files/sec 1.3 files/sec

dCache-PNFS transaction "bandwidth" of about 25-30k per hour

30k (open/close)/hour = 15000files = 4 input files/sec

.) Reconstruction farm:

Assuming Reconstruction farm is producing 5 TBytes of data per day
for the typical file size of 1 GByte this translates into ~5000 files

5000 input files/day = 0.0578 files/sec x2 safety = 0.116 files/sec

5000 input files x~10 for the intermediate files x2 for their
declaration and deletion of the tmp location plus the final files ~
100000 file declaration/day

1.2/sec x2 as a safety margin = 2.4 output/intermediate file declaration/sec

get metadata for each of the intermediate file 50000/day x2 = 1.2 files/sec

.) Donatella's example:

1GB file/10min x100 segments = 0.167 input files/sec; 0.6TB/h
(if x4000 segments = 6.7 input files/sec, or 24TB/h)
(if everyone did it it would exceed the dCache agreement,
so we would need to divide it by 6).

her group is producing 12 intermediate files (->24 declarations) per
file (I neglect here the merged output files as this is a small fraction
of the total)
0.042 file declarations/sec x100 segments 4.2 file declarations/sec
 x4000 167 file declarations/sec

to stay within the dCache limits (assuming 4 input files/sec)
the maximum would be 100 file declarations per sec

trying to be realistic let us say that only 5 groups will do a split, so
I would say it can be reduced to 4.2x5x2~ 50

.) caf submission/number of projects estimate
jobs can be submitted every 0.1 sec shortest segment can run for 10min
(it is set to 40min now) so this means about 7-10 project starts/ends
per second at peak, but lets assume it is only one per second for now
given that there are very few one file projects; but each submission
does a dataset verification, so this is another query per second

.) MC production of 600 files/day (gives a negligible number of declarations)

In summary; current requirements for sam should be (assuming x2 safety

 15

margin)

 8 input files per second
 50 output file declarations per second (this include an initial
declaration plus a location modification);
 25 one file metadata queries per second
 1 project start/stop per second
 1 dataset query per second
 2 project summaries per second
 1 project recoveries per second

the numbers are dc rate, we are not sure what the peak is, but the fact
that there are ~4000 caf nodes should be taken into account.

this does not include remote dcafs; so, may be another factor of two is
in order.

We also think we should have an expected command response time which
should be under 5 seconds for most commands and 10 sec for the longer ones.
Reliability is more important that the response time though.

Krzysztof & Doug for CDF DH

 16

Appendix B R Session
R is an open source statistical analysis software package that allows for very
easy analysis of data in databases and text files. I wrote a "notebook" style
package that allows one to use R from within Microsoft Word. Below is the
notebook providing all of the code and results for this document.

B.1 Connect to R and initialize
Connect to R running locally on my laptop.

<R0> #connect port 6101 timeout 20
R is using work directory /Users/adam/work/projects/samData/d0Usage
Set up graphics

<R1> library(lattice)

<R2> trellis.par.set(col.whitebg())

<R3> fontsize = trellis.par.get("fontsize"); fontsize$text=16 ;
fontsize$points=6 ; trellis.par.set("fontsize", fontsize)

I have a helper function that makes putting graphics into Word easy.

<R4> mp
function (plotExpr, file, height = 7, width = 7, res = 72 * 3)
{
 bitmap(file, "pngalpha", height = height, width = width,
 res = res, pointsize = 10)
 r = eval(plotExpr)
 if (class(r) == "trellis")
 print(r)
 invisible(dev.off())
}
<environment: namespace:RemoteRSOAP>

Initialize the database connection using the public read account

<R5> library(ROracle)
Loading required package: DBI

<R6> db = dbConnect(Oracle(), db="d0ofprd1", user="d0read",
pass="reader")

Make a little function to help in creation of sql strings

<R7> p = function(...) paste(..., sep="\n")

 17

B.2 Get station information
We need information about the SAM stations

<R8> sql = p("select station_id, station_name from stations")

<R9> stations = dbGetQuery(db, sql)

Make the column names easier.

<R10> names(stations) = c("id", "name")

What did we get? Print the first 10.

<R11> stations[1:10,]
 id name
0 1 protofarm
1 6 d0_main_analysis
2 11 d02ka
3 21 central-analysis
4 29 datalogger
5 31 d0-test-station
6 43 d0small-01
7 46 ccin2p3-analysis
8 51 pctestfarm
9 56 clued0-v5
Add a new column for the DBserver that handles the station (default is the
station DBServer)

<R12> stations$dbServer = "station"

We know that the CAB stations belong to the CAB DBServer.

<R13> stations$dbServer[grep("fnal-cabsrv", stations$name)] = "cab"

The farm uses the farm DBServer

<R14> stations$dbServer[stations$name == 'fnal-farm'] = "farm"

The ccin2p3-analysis and ccin2p3-grid0 (but not grid1) stations use the Grid
DBServer

<R15> stations$dbServer[stations$name == 'ccin2p3-analysis' |
 stations$name == 'ccin2p3-grid0'] = "grid"

When Central-analysis was around, it used its own DBServer

<R16> stations$dbServer[stations$name == 'central-analysis'] =
'central-analysis'

 18

Online uses the dlsam DB server.

<R17> stations$dbServer[grep("d0ol", stations$name)] = "dlsam"

One would think that the clued0 station would use the clued0 DBServer, but
in fact it uses the station DBServer. The clued0 DBServer is for interactive
stuff.

How many stations are on each DBServer?

<R18> table(stations$dbServer)

 cab central-analysis dlsam farm
 3 1 5 1
 grid station
 2 93

B.3 Project starts
Do the query for the year July 1, 2004 - July 1, 2005

<R65> sql = p("select to_char(start_time, 'MM/DD/YYYY'), station_id, ",
 " count(project_id) ",
 " from analysis_projects ",
 " where start_time > '1-jul-2004' and ",
 " start_time < '1-jul-2005' ",
 " group by to_char(start_time, 'MM/DD/YYYY'), station_id")

<R66> ps = dbGetQuery(db, sql)

<R67> names(ps) = c("date", "stationId", "count")

<R68> ps[1:10,]
 date stationId count
0 01/01/2005 21 39
1 01/01/2005 56 8
2 01/01/2005 131 11
3 01/01/2005 372 13
4 01/01/2005 406 25
5 01/01/2005 411 199
6 01/02/2005 21 19
7 01/02/2005 56 11
8 01/02/2005 121 1
9 01/02/2005 136 1

 19

Fill in the db server and station name given the id

<R75> pss = merge(ps, stations, by.x="stationId", by.y="id", sort=F)

Let's sum up the counts by date for a total

<R77> pss.total = aggregate(pss$count, by=list(date=pss$date), sum)

<R82> names(pss.total) = c("date", "counts")

<R83> pss.total[1:10,]
 date counts
1 01/01/2005 295
2 01/02/2005 362
3 01/03/2005 357
4 01/04/2005 536
5 01/05/2005 404
6 01/06/2005 691
7 01/07/2005 593
8 01/08/2005 390
9 01/09/2005 434
10 01/10/2005 513
What are the statistics?

<R86> summary(pss.total$counts)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 41.0 177.0 265.0 282.8 357.0 925.0

Set some MSWord variables that we can refer to later

<R87> #var pss.max = max(pss.total$counts)
925

<R90> #var pss.mean = format(mean(pss.total$counts), digits=4)
282.8

<R29> #var pss.max.s = format(max(pss.total$counts)/24/60/60,
digits=2)

0.011

<R30> #var pss.mean.s = format(mean(pss.total$counts)/24/60/60,
digits=2)

0.0033

<R258> #var pss.mean.cdf = format(
1.0/(mean(pss.total$counts)/24/60/60), digits=2)

306

<R259> #var pss.max.cdf = format(1.0/(max(pss.total$counts)/24/60/60),
digits=2)

93
Convert the dates to POSIX dates

 20

<R99> pss.total$pDate = as.POSIXct(strptime(pss.total$date,
"%m/%d/%Y"))

Plot the number of project starts per day

<R19> mp(
 xyplot(counts ~ pDate, data=pss.total, type="s",
 xlab="Date", ylab="# project starts/day"
),
 "pss.total.png", h=4, w=5
)
#with graphics pss.total.png

Split up by DBServers,

<R167> pss.dbServer = aggregate(pss$count,
by=list(dbServer=pss$dbServer), sum)

<R168> names(pss.dbServer) = c("dbServer", "count")

<R169> pss.dbServer

 21

 dbServer count
1 cab 50924
2 central-analysis 6746
3 farm 7264
4 grid 5366
5 station 32923

<R170> pss.dbServer$perc = pss.dbServer$count / sum(pss.dbServer$count)
* 100

<R171> mp(
 dotplot(dbServer ~ perc, data=pss.dbServer, xlab="% load",
 ylab="DB Server"),
 "pss.dbServer.png", h=3, w=5)
#with graphics pss.dbServer.png

B.4 Process starts
Do the query for the year July 1, 2004 – July 1, 2005

<R57> sql = p("select to_char(pr.create_date, 'MM/DD/YYYY'),",
 " p.station_id, count(pr.process_id)",
 " from analysis_projects p, consumers c,",
 " analysis_processes pr",
 " where pr.create_date > '1-jul-2004' and ",
 " pr.create_date < '1-jul-2005' and",
 " c.consumer_id = pr.consumer_id and",
 " p.project_id = c.project_id",
 " group by to_char(pr.create_date, 'MM/DD/YYYY'),",
 " p.station_id"
)

 22

<R59> prs = dbGetQuery(db, sql)
#with timeout 120

<R61> names(prs) = c("date", "stationId", "count")

<R62> prs[1:10,]
 date stationId count
0 01/01/2005 21 39
1 01/01/2005 56 8
2 01/01/2005 131 885
3 01/01/2005 372 13
4 01/01/2005 406 100
5 01/01/2005 411 227
6 01/02/2005 21 19
7 01/02/2005 56 4
8 01/02/2005 121 1
9 01/02/2005 136 1
Fill in the db server and station name given the id

<R63> prss = merge(prs, stations, by.x="stationId", by.y="id", sort=F)

Let's sum up the counts by date for a total

<R64> prss.total = aggregate(prss$count, by=list(date=prss$date), sum)

<R65> names(prss.total) = c("date", "counts")

<R66> prss.total[1:10,]
 date counts
1 01/01/2005 1272
2 01/02/2005 687
3 01/03/2005 1898
4 01/04/2005 2555
5 01/05/2005 3477
6 01/06/2005 1641
7 01/07/2005 1414
8 01/08/2005 1529
9 01/09/2005 1079
10 01/10/2005 1982
What are the statistics?

<R67> summary(prss.total$counts)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 162 1222 1982 2522 3725 7722

 23

Set some MSWord variables that we can refer to later

<R68> #var prss.max = max(prss.total$counts)
7722

<R70> #var prss.mean = format(mean(prss.total$counts), digits=4)
2522

<R71> #var prss.max.s = format(max(prss.total$counts)/24/60/60,
digits=2)

0.09

<R72> #var prss.mean.s = format(mean(prss.total$counts)/24/60/60,
digits=2)

0.029

<R256> #var prss.mean.cdf = format(
1.0/(mean(prss.total$counts)/24/60/60), digits=2)

34

<R257> #var prss.max.cdf = format(
1.0/(max(prss.total$counts)/24/60/60), digits=2)

11

Convert the dates to POSIX dates

<R73> prss.total$pDate = as.POSIXct(strptime(prss.total$date,
"%m/%d/%Y"))

Plot the number of project starts per day

<R87> mp(
 xyplot(counts ~ pDate, data=prss.total, type="s",
 xlab="Date", ylab="# process starts/day"
),
 "prss.total.png", h=4, w=5
)
#with graphics prss.total.png

 24

Split up by DBServers,

<R75> prss.dbServer = aggregate(prss$count,
by=list(dbServer=prss$dbServer), sum)

<R76> names(prss.dbServer) = c("dbServer", "count")

<R77> prss.dbServer
 dbServer count
1 cab 290835
2 central-analysis 6587
3 farm 404541
4 grid 62171
5 station 156564

<R78> prss.dbServer$perc = prss.dbServer$count /
sum(prss.dbServer$count) * 100

<R90> mp(
 dotplot(dbServer ~ perc, data=prss.dbServer, xlab="% load",
 ylab="DB Server"),
 "prss.dbServer.png", h=3, w=5)
#with graphics prss.dbServer.png

 25

I wonder what the rise is in the total plot?

<R81> prss$pDate = as.POSIXct(strptime(prss$date, "%m/%d/%Y"))

<R89> mp(
 xyplot(count ~ pDate | dbServer, data=prss, type="s",
 xlab="Date", ylab="# process starts/day",
 par.strip.text=list(cex=0.6)
),
 "prss.splitByDbServer.png", h=5, w=6
)
#with graphics prss.splitByDbServer.png

 26

So clearly it's due to the reprocessing!

B.5 File consumption
Do the query for the year July 1, 2004 – July 1, 2005

<R91> sql = p("select to_char(cf.create_date, 'MM/DD/YYYY'),",
" p.station_id, ",
" count(cf.proj_snap_id || cf.file_number ||",
" cf.process_id) ",
" from analysis_projects p, consumers c, consumed_files cf,",
" where cf.create_date > '1-jul-2004' and ",
" cf.create_date < '1-jul-2005' and ",
" c.consumer_id = cf.consumer_id and ",
" p.project_id = c.project_id ",
" group by to_char(cf.create_date, 'MM/DD/YYYY'), ",
" p.station_id"
)

 27

<R92> fc = dbGetQuery(db, sql)
#with timeout 120

<R260> names(fc) = c("date", "stationId", "count")

<R94> fc[1:10,]
 date stationId count
0 01/01/2005 21 1499
1 01/01/2005 56 11
2 01/01/2005 131 1472
3 01/01/2005 201 10
4 01/01/2005 372 361
5 01/01/2005 406 2474
6 01/01/2005 411 5473
7 01/02/2005 21 1215
8 01/02/2005 56 111
9 01/02/2005 131 62
Fill in the db server and station name given the id

<R95> fcs = merge(fc, stations, by.x="stationId", by.y="id", sort=F)

Let's sum up the counts by date for a total

<R96> fcs.total = aggregate(fcs$count, by=list(date=fcs$date), sum)

<R97> names(fcs.total) = c("date", "counts")

<R98> fcs.total[1:10,]
 date counts
1 01/01/2005 11300
2 01/02/2005 13278
3 01/03/2005 13376
4 01/04/2005 13670
5 01/05/2005 14563
6 01/06/2005 37759
7 01/07/2005 26887
8 01/08/2005 15260
9 01/09/2005 18609
10 01/10/2005 21938
What are the statistics?

<R99> summary(fcs.total$counts)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1620 9136 12020 13190 16650 37760

Set some MSWord variables that we can refer to later

 28

<R100> #var fcs.max = max(fcs.total$counts)
37759

<R101> #var fcs.mean = format(mean(fcs.total$counts), digits=4)
13192

<R102> #var fcs.max.s = format(max(fcs.total$counts)/24/60/60,
digits=2)

0.44

<R103> #var fcs.mean.s = format(mean(fcs.total$counts)/24/60/60,
digits=2)

0.15

<R122> #var fcs.mean.cdf = format(8.0 /
(mean(fcs.total$counts)/24/60/60), digits=1)

52

<R123> #var fcs.max.cdf = format(8.0 /
(max(fcs.total$counts)/24/60/60), digits=1)

18
Convert the dates to POSIX dates

<R105> fcs.total$pDate = as.POSIXct(strptime(fcs.total$date,
"%m/%d/%Y"))

Plot the number of files consumed per day

<R106> mp(
 xyplot(counts ~ pDate, data=fcs.total, type="s",
 xlab="Date", ylab="# files consumed/day"
),
 "fcs.total.png", h=4, w=5
)
#with graphics fcs.total.png

 29

Split up by DBServers,

<R107> fcs.dbServer = aggregate(fcs$count,
by=list(dbServer=fcs$dbServer), sum)

<R108> names(fcs.dbServer) = c("dbServer", "count")

<R109> fcs.dbServer
 dbServer count
1 cab 2979874
2 central-analysis 411431
3 farm 381247
4 grid 209250
5 station 833329

<R110> fcs.dbServer$perc = fcs.dbServer$count / sum(fcs.dbServer$count)
* 100

<R111> mp(
 dotplot(dbServer ~ perc, data=fcs.dbServer, xlab="% load",
 ylab="DB Server"),
 "fcs.dbServer.png", h=3, w=5)
#with graphics fcs.dbServer.png

 30

<R112> fcs$pDate = as.POSIXct(strptime(fcs$date, "%m/%d/%Y"))

<R113> mp(
 xyplot(count ~ pDate | dbServer, data=fcs, type="s",
 xlab="Date", ylab="# files consumed/day",
 par.strip.text=list(cex=0.6)
),
 "fcs.splitByDbServer.png", h=5, w=6
)
#with graphics fcs.splitByDbServer.png

 31

B.6 File storage
Do the query for the year July 1, 2004 – July 1, 2005

<R20> sql = p("select to_char(df.create_date, 'MM/DD/YYYY'),",
" p.station_id, count(df.file_id),",
" sum(df.file_size_in_bytes)",
" from analysis_projects p, consumers c,",
" analysis_processes pr, data_files df",
" where df.create_date > '1-jul-2004' and ",
" df.create_date < '1-jul-2005' and",
" pr.process_id = df.process_id and",
" c.consumer_id = pr.consumer_id and",
" p.project_id = c.project_id",
" group by to_char(df.create_date, 'MM/DD/YYYY'),",
" p.station_id")

<R21> fs = dbGetQuery(db, sql)
#with timeout 120

 32

<R22> fs[1:10,]
 TO_CHAR(DF.CREATE_DATE,'MM/DD/ STATION_ID COUNT(DF.FILE_ID)
0 01/01/2005 131 194
1 01/01/2005 406 291
2 01/01/2005 411 428
3 01/02/2005 131 70
4 01/03/2005 131 83
5 01/03/2005 406 9
6 01/03/2005 411 1274
7 01/04/2005 131 223
8 01/04/2005 411 308
9 01/05/2005 131 530
 SUM(DF.FILE_SIZE_IN_BYTES)
0 1.762065e+11
1 2.791566e+11
2 4.219895e+11
3 7.045787e+10
4 2.577005e+10
5 9.086288e+09
6 1.201856e+12
7 9.328890e+10
8 3.048394e+11
9 2.177248e+11

<R23> names(fs) = c("date", "stationId", "count", "bytes")

File stores from online don't show up here because they have a fake process
ID. Just look for raw files.

<R24> sql = p("select to_char(df.create_date, 'MM/DD/YYYY'),",
" count(df.file_id), sum(df.file_size_in_bytes)",
" from data_files df",
" where df.create_date > '1-jul-2004' and ",
" df.create_date < '1-jul-2005' and",
" df.data_tier_id = 9",
" group by to_char(df.create_date, 'MM/DD/YYYY')")

<R25> fsraw = dbGetQuery(db, sql)
#with timeout 120

<R26> names(fsraw) = c("date", "count", "bytes")

 33

<R27> fsraw[1:10,]
 date count bytes
0 01/01/2005 1247 567084952909
1 01/02/2005 1029 477629104477
2 01/03/2005 136 29874210828
3 01/04/2005 100 13977595986
4 01/05/2005 107 15204180560
5 01/06/2005 527 175065214569
6 01/07/2005 303 112926648528
7 01/08/2005 588 263002335778
8 01/09/2005 905 377378266664
9 01/10/2005 1123 523888321583
Figure out the id number for d0olc

<R28> stations$id[grep('d0ol', stations$name)]
[1] 116 117 118 456 466

<R29> stations$name[grep('d0ol', stations$name)]
[1] "datalogger-d0olc" "datalogger-d0olb" "datalogger-d0ola"
"datalogger-d0olf"
[5] "datalogger-d0oll"

<R30> fsraw$stationId = 116

Join the data frames

<R31> fsnoraw = fs

<R32> fs = rbind(fsnoraw, fsraw)

Fill in the db server and station name given the id

<R33> fss = merge(fs, stations, by.x="stationId", by.y="id", sort=F)

<R79> fss$tBytes = fss$bytes/(1024^4)

Let's sum up the counts by date for a total

<R36> fss.total = aggregate(fss[c("count", "bytes")],
by=list(date=fss$date), sum)

<R37> fss.total[1:5,]

 34

 date count bytes
1 01/01/2005 2160 1.444438e+12
2 01/02/2005 1099 5.480870e+11
3 01/03/2005 1502 1.266587e+12
4 01/04/2005 631 4.121058e+11
5 01/05/2005 1276 6.634502e+11

<R38> names(fss.total) = c("date", "counts", "bytes")

<R39> fss.total[1:10,]
 date counts bytes
1 01/01/2005 2160 1.444438e+12
2 01/02/2005 1099 5.480870e+11
3 01/03/2005 1502 1.266587e+12
4 01/04/2005 631 4.121058e+11
5 01/05/2005 1276 6.634502e+11
6 01/06/2005 1146 4.955848e+11
7 01/07/2005 619 3.548254e+11
8 01/08/2005 646 3.059922e+11
9 01/09/2005 939 4.088178e+11
10 01/10/2005 1253 5.690980e+11
Convert to GB

<R65> fss.total$tBytes = fss.total$bytes/(1024^4)

What are the statistics?

<R40> summary(fss.total$counts)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 15 1091 1841 2471 3627 8425

<R66> summary(fss.total$tBytes)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
0.003057 0.555600 0.882700 0.908600 1.235000 2.598000
Set some MSWord variables that we can refer to later

<R240> #var fss.max = max(fss.total$counts)
8425

<R241> #var fss.mean = format(mean(fss.total$counts), digits=4)
2471

<R242> #var fss.max.s = format(max(fss.total$counts)/24/60/60,
digits=2)

0.098

<R243> #var fss.mean.s = format(mean(fss.total$counts)/24/60/60,
digits=2)

0.029

<R244> #var fss.mean.cdf = format(50.0 /
(mean(fss.total$counts)/24/60/60), digits=1)

 35

1748

<R245> #var fss.max.cdf = format(50.0 /
(max(fss.total$counts)/24/60/60), digits=1)

513

<R70> #var fss.bytes.max = format(max(fss.total$tBytes), digits=3)
2.6

<R73> #var fss.bytes.mean = format(mean(fss.total$tBytes), digits=2)
0.9

Convert the dates to POSIX dates

<R50> fss.total$pDate = as.POSIXct(strptime(fss.total$date,
"%m/%d/%Y"))

Plot the number of files stored per day

<R51> mp(
 xyplot(counts ~ pDate, data=fss.total, type="s",
 xlab="Date", ylab="# files stored/day"
),
 "fss.total.png", h=4, w=5
)
#with graphics fss.total.png

 36

Do for bytes

<R75> mp(
 xyplot(tBytes ~ pDate, data=fss.total, type="s",
 xlab="Date", ylab="TB stored/day"
),
 "fss.gBtotal.png", h=4, w=5
)
#with graphics fss.gBtotal.png

Split up by DBServers,

<R56> fss.dbServer = aggregate(fss[c("count", "bytes")],
by=list(dbServer=fss$dbServer), sum)

<R57> names(fss.dbServer) = c("dbServer", "count", "bytes")

<R58> fss.dbServer

 37

 dbServer count bytes
1 cab 123095 9.603301e+13
2 central-analysis 268 3.004949e+11
3 dlsam 264164 1.202864e+14
4 farm 337995 9.494016e+13
5 grid 58849 1.325098e+13
6 station 115016 3.881195e+13

<R78> fss.dbServer$tBytes = fss.dbServer$bytes/(1024^4)

<R60> fss.dbServer$perc = fss.dbServer$count / sum(fss.dbServer$count)
* 100

<R61> mp(
 dotplot(dbServer ~ perc, data=fss.dbServer, xlab="% load",
 ylab="DB Server"),
 "fss.dbServer.png", h=3, w=5)
#with graphics fss.dbServer.png

<R62> fss$pDate = as.POSIXct(strptime(fss$date, "%m/%d/%Y"))

 38

<R63> mp(
 xyplot(count ~ pDate | dbServer, data=fss, type="s",
 xlab="Date", ylab="# files stored/day",
 par.strip.text=list(cex=0.6)
),
 "fss.splitByDbServer.png", h=5, w=6
)
#with graphics fss.splitByDbServer.png

<R80> mp(

 xyplot(tBytes ~ pDate | dbServer, data=fss, type="s",
 xlab="Date", ylab="TB stored/day",
 par.strip.text=list(cex=0.6)
),
 "fss.tBsplitByDbServer.png", h=5, w=6
)
#with graphics fss.tBsplitByDbServer.png

 39

